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Abstract. The equilibrium low-temperature physics of disordered systems is governed by the
statistics of extremely low-energy states. It is thus relevant to discuss the possible universality
classes for extreme-value statistics. We compare the usual probabilistic classification to the
results of the replica approach. We show in detail for several problems (including the random
energy model and the decaying Burgers turbulence) that one class of independent variables
corresponds exactly to the so-calledone step replica symmetry breakingsolution in the replica
language. We argue that this universality class holds if the correlations are sufficiently weak, and
propose a conjecture on the level of correlations which leads to different universality classes.

1. Introduction

The replica method is one of the very few general analytical methods available to investigate
disordered systems [1]. Although the physical meaning of Parisi’s ‘replica symmetry
breaking’ (RSB) scheme needed to obtain the correct low-temperature solution of various
random models has already been discussed on several occasions [1], its precise relation with
the so-called extreme-value statistics [2, 3] (and therefore its scope and limitations) was not
previously clearly established. That such a relation should exist is however intuitively
obvious: at low temperatures, a disordered system will preferentially occupy its low-energy
states, which are random variables because of the disordered nature of the problem. The
statistics of the free-energy (or of other observables, such as energybarriers [4, 5]) will thus
reflect the statistics of these low-energy (extreme) states. It is well known in probability
theory that extreme-value statistics can be classified into different universality classes [2, 3].
Conversely, the RSB scheme has shown the existence of at least two broad classes of
systems, those with a first-order, ‘one-step’ RSB and those with continuous RSB.

It is easy to identify the ‘one-step RSB’ class with one particular universality class of
extreme-value statistics, i.e. the Gumbel class, which concerns the minimum of continuous
variables which are unbounded but have a distribution decaying faster than any power at
−∞. The simplest representative of this class is the random energy model (REM) [6], where
the energy states are independent (but not necessarily Gaussian distributed). An interesting
point is that the REM can be given a spatial structure, for which the replica theory still
provides theexact solution. This spatial REM is in turn connected, in one dimension, to
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the problem of decaying Burgers turbulence [8] in which an infinitely compressible fluid
evolves from random initial conditions. Exact results for the velocity correlations at large
times in Burgers turbulence were obtained long ago by Kida [9]. We shall show that these
results coincide with those of the replica method, the underlying reason being that the late
stage of turbulence decay is governed by the extreme values for the integral of the initial
velocity field.

It is less easy to identify the other universality classes of extreme-value statistics. There
should be at least two types of generalizations. One type still concernsindependentrandom
variables but with either power-law decay of the distribution (in which case there isa priori
no replica formalism), or bounded random variables (the Weibull distribution of extremes),
which does not seem to correspond to any known RSB scheme. The other type concerns
correlated variables, for which the only results known to us are actually derived in the
framework of replicas: those are cases of full RSB, which describe random variables with
a certain (hierarchical) type of correlations.

These universality classes are the counterpart for extremes of random variables to the
usual universality classes studied in the framework of sums of random variables. Taking the
well known example of random walks or polymers, the usual random walk, or ideal polymer,
is described asymptotically by the Gaussian central-limit theorem, while the addition of
independent variables with infinite variance leads to new universality classes (Lévy sums)
[10]. The introduction of long-range correlations such as self avoidance also leads to totally
new universality classes [10]. We wish here to take a first step in an analogous categorization
for extreme values, which appear naturally in disordered systems at low temperatures. We
thus often rely on existing results and put them in this perspective. While the aim of this
paper is mainly methodological, it also contains the following new results: a version of the
REM with a first-order phase transition (section 3.2), or with no transition (section 6), a
reformulation of Kida’s results on the statistics of shocks in declining Burgers turbulence
using replicas (section 5.3), and a conjecture on the amount of correlations we can add to
the REM without changing the universality class of the low-temperature phase (section 6).

2. Extreme-value statistics

2.1. Scaling regime

We start by recalling standard results of extreme-values statistics, in order to set the stage for
the following discussions. ConsiderM independent, identically distributed random variables
Ei, i = 1, . . . ,M (‘energies’), such that the probability distribution decays forEi → −∞
faster than any power law:

P(E) ∼ A

|E|α exp[−B|E|δ] B, δ > 0 E→−∞. (1)

We are interested in the statistics of the lowest energy stateE∗ = min{E1, . . . EM} for large
M. DefiningP<(E) as the repartition function ofE

P<(E) =
∫ E

−∞
dE′ P(E′) (2)

we can express the distributionPM of E∗ as

PM(E
∗) = MP(E∗)[1− P<(E∗)]M−1 = − d

dE∗
[P>(E∗)]M (3)
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For largeM, the minimumE∗ will be negative and large, so that

[1− P<(E∗)]M ' exp[−MP<(E∗)]. (4)

The repartition function ofE∗ thus becomes very small whenE∗ is smaller than the
characteristic value of the energyEc(M) defined byMP<(Ec) = 1. To logarithmic
accuracy, this gives in the case of the distribution (1)

Ec(M) ' −
(

logM

B

)1/δ

. (5)

The value of the extremeE∗ fluctuates aroundEc. By expanding (4) in(E∗ −Ec)/Ec, one
sees that the size of fluctuations is

1(M) = 1

Bδ|Ec|(M) . (6)

More precisely, the rescaled minimum energy variableu ≡ (E∗ − Ec(M))/1(M) obeys,
for largeM, a universal ‘Gumbel’ distribution [2, 3]

P ∗(u) = exp(u− expu). (7)

The maximum ofP ∗(u) occurs atu = 0, meaning thatEc(M) is actually the most probable
value for the extreme energy. Finally, as in any ‘central’-limit theorem, this behaviour
is only valid in the region where the deviationε from Ec is of the order of1(M),
which goes to zero withM if δ > 1 and diverges otherwise. Therelative fluctuations
1(M)/Ec(M), however, are always of order 1/ logM. A very important property, which
we shall emphasize later on, is thatP ∗(u) vanishes exponentially foru → −∞. In the
scaling region, the probability for a given energyEi to beEi = Ec(M)+1(M)ui behaves
as (c/M) exp(ui). So the low-lying energies are independent random variables which are
exponentially distributed.

2.2. The large M limit and the random energy model

Let us now consider the following partition function:

Z =
M∑
i=1

zi zi = exp

[
−Ei
T

]
(8)

where theEi are distributed as in (1). This is a slight generalization of Derrida’s original
REM, initially introduced with a purely Gaussian distribution (δ = 2). Obviously, the
independent variableszi , are large whenEi is large and negative. In the scaling region
defined above, the exponential distribution of the rescaled energy translates into a power-
law decay ofP(z) for largez:

P(z) ∝ z−1−µ z→∞ (9)

whereµ = T/1(M). The partition sumZ behaves very differently in the regionµ < 1,
where the average value ofz diverges and thus only a small number of terms (those of
orderM1/µ) contribute toZ, and in the regionµ > 1, where all theM terms give a (small)
contribution toZ. This means that for

Tc = 1(M) (10)

for which µ = 1, the probability measure concentrates onto a finite number of states,
corresponding to the glass transition in these models. In the random-energy model,M is
the number of statesM = 2N . By choosingB = N1−δ, it is possible to ensure both an
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extensive ground-state energy (Ec ∝ N ) and a finiteTc in the largeN limit. Let us now
study the statistics of the weightspi ≡ zi/Z in the glassy regionT < Tc. Since

wi = zi

zi + Z ′ (11)

whereZ ′ =∑k(6=i) zk is independent ofzi (and of orderM1/µ), one readily finds that†

P(w) = Z ′
(1− w)2P

(
z = Z

′w
1− w

)
. (12)

Forwi to be nonzero in the largeM limit, zi has to be large. In that region we can use the
asymptotic form (9) forP(z), giving

P(w) = C

M
(1− w)µ−1w−1−µ w � M−1/µ (13)

whereC is a constant fixed by the conditionM
∫ 1

0 dwwP(w) ≡ 1. From this probability

distribution of each weight, we can deduce the momentsYk ≡
∑

i w
k
i , which characterize to

what extent the measure concentrates onto a few states: if all weights are of the same order
of magnitude, thenYk ∼ M1−k → 0 for k > 1; while if only a finite number of weights
contribute, the momentsYk remain finite whenM →∞. In this case, one finds, forµ < 1,

Yk = M
∫ 1

0
dwwkP (w) = 0[k − µ]

0[k]0[1− µ]
(k > µ) (14)

(see also [11]). Sinceµ = T/Tc, one finds thatY2 goes linearly to zero forT → Tc, and
thatYk = 1−(0′[k]−0′[1])/0[k])T /Tc for T → 0. Finally, the average energy per degree
of freedom of the system is constant throughout the low-temperature phase (T < Tc) and
given byE/N = Ec/N +O(1/N) ∼ −(log 2)1/δ.

3. The replica approach

3.1. The REM

We shall now show how all these results can be recovered using the replica method. We
suppose thatδ > 1 (the caseδ < 1 will be discussed in section 3.2) and introduce the
characteristic functiong(λ) through∫ ∞

−∞
dE P(E)exp[−λE] ≡ exp[g(λ)]. (15)

SinceB = N1−δ, this integral can be computed at largeN with a saddle-point method,
which gives

g(λ) = (δ − 1)N

(
λ

δ

)δ/δ−1

. (16)

In the replica method we need to compute the moments of theZ distribution:

Zn =
∑

i1,i2,...in

zi1zi2 . . . zin ≡
∑

i1,i2,...in

exp

[
− 1

T

∑
i

Ei

n∑
a=1

δi,ia

]
. (17)

Averaging over theEi gives

Zn =
∑

i1,i2,...in

exp

[∑
i

g

(
1

T

n∑
a=1

δi,ia

)]
. (18)

† We denote asP(.) the probability density of the variable appearing in the parentheses.
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The point now is to understand which configurations of{i1, i2, . . . in} will dominate the
above sum whenN →∞ (andn→ 0). The simplest Ansatz, corresponding to the largest
phase-space volume, assumes that allia are different, leading to

Zn = M(M − 1) . . . (M − n+ 1) exp

[
ng

(
1

T

)]
' exp

[
n

(
logM + g

(
1

T

))]
. (19)

Taking n → 0, one thus finds that the free energy per degree of freedomf = − T
N

logZ
takes the value

f = f0 ≡ −T log 2− (δ − 1)δ−
δ
δ−1T −

1
δ−1 . (20)

The entropys0 = −df0/dT is therefore equal to

s0 = log(2)− (δT )− δ
δ−1 (21)

and becomes negative below a critical temperature

Tc = 1

δ
log(2)

1−δ
δ . (22)

So this solution, called ‘replica symmetric’ (since all replicasia play a symmetric role), has
to be modified in the low-temperature phase. The correct configurations which dominate
the sum (18) atT < Tc are called ‘one-step RSB’ and are such that then replica indices
{i1, i2, . . . in} are grouped inton/m groups ofm equal indices, which can be written, after
proper relabelling:

i1 = i2 = . . . = im = k1

im+1 = im+2 = . . . = i2m = k2

. . .

in−m+1 = . . . = in = kn/m

(23)

and now the indicesk1, . . . , kn/m are all different one from the other. These configurations
contribute toZn as

Zn = M(M − 1) . . . (M − n/m+ 1) exp
[ n
m
g
(m
T

)] n!

m!n/m
(24)

from which one immediately deduces

f (T ) = f0(T /m) (25)

wheref0 is defined in equation (20). The extremum of this free energy with respect tom

is obtained when
∂f

∂m
= 0= s0(T /m) (26)

which gives

m = T

Tc
= µ. (27)

Note that this relation is independent ofδ. Therefore this one-step RSB solution predicts
that the system freezes at the critical temperatureTc which is the temperature where the
entropys0 vanishes. The energy density is constant throughout the low-temperature phase,
and equals

e = f0(Tc) = −(log 2)1/δ (28)

in agreement with the direct computation. Since the free-energy is constant, the entropy of
the whole low-temperature phase is zero [6].
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It turns out that the finer details, like the distribution of the weights of the configurations
which dominate the low-temperature measure, can be computed by this replica approach
[12]. By definition, the momentsYk are equal to

Yk =
∑
i

zki

Zk = lim
n→0

∑
i

zki Zn−k (29)

= lim
n→0

1

n(n− 1) . . . (n− k + 1)

′∑
a1,...,ak

∑
i1,...,in

zi1 . . . zin

k∏
j=1

δia1 ,iaj
(30)

where the sum primed over thea’s runs from 1 ton, with all a’s different. Owing to the
structure of the RSB, this means that one simply has to pick thek 6 m replica indices
a1, . . . , ak in the same ‘group’, for which there are(m−1) . . . (m−k+1) possibilities once
a1 has been chosen. Hence,

Yk = lim
n→0

n(m− 1) . . . (m− k + 1)

n(n− 1) . . . (n− k + 1)
Zn = 0[k − µ]

0[k]0[1− µ]
(31)

in agreement with the direct computation (14).

3.2. The REM withδ < 1: a first-order transition

The above method fails whenδ 6 1, which actually corresponds to a different universality
class from the point of view of critical phenomena, while the nature of the low-temperature
phase leaves it in the same class as the systems withδ > 1, in agreement with the extreme-
value classification which does not distinguish betweenδ > 1 or δ < 1. In order to study
the transition, we use Derrida’s original ‘microcanonical’ method. Using the normalization
B = N1−δ, the partition function is equal to

Z =
∫ 0

−ec

de exp[Nϕ(e)] ϕ(e) = log 2− |e|δ + |e|
T

(32)

wheree = E/N , andec is the energy density beyond which there are no states (forN →∞),
given by 2N exp(−Neδc) = 1. As shown in figure 1, the integral is dominated either by
e = 0 or by e = −ec, depending on the temperature. WhenT > Tc = (log 2)1−δ/δ,
the free energy is equal to−NT log 2, while for T < Tc, the free energy is equal to a
constant−Nec = −N(log 2)1/δ. The transition atTc is now a first-order transition from the
thermodynamic point of view, with a jump in the entropy. This is in contrast to the usual
caseδ > 1 where the transition is thermodynamically of second order†.

In the low-temperature phase, only the neighbourhood ofEc = −N |ec| is of importance,
and we get back to the universal Gumbel distribution since the density of states is still locally
exponential:

P(E = Ec+ ε) ∝ exp
µε

T
µ ≡ T

Tc
δ. (33)

The value ofµ again determines the statistics of the weights, as above. Note, however, that
for δ < 1, the value of the parameterµ (corresponding to the RSB parameter) is smaller
than 1 at the transitionT = T −c . HenceY2 is discontinuous atT = Tc, in contrast to the
caseδ > 1.

† Although there is a jump in the Edwards–Anderson order parameter [6].
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Figure 1. ϕ(e), as defined in equation (32), as a function ofe for different temperatures. The
saddle point is thus ate = 0 for T > Tc and ate = −|ec| for T < Tc. There are no states (in
the limit N →∞ beyond−|ec|.

3.3. Physical interpretation of the replica solution

The reason why replica symmetry must be broken in order to get sensible results in this
problem is rather clear. Since the distribution of the Boltzmann weightszi is a power law
with an exponentµ < 1 in the low-temperature phase, all integer moments ofZ (and thus
of z) are formally divergent, and are thus dominated by a cut-off for largez which has
nothing to do with the value of the ‘typical’z’s, and hence of the free-energy. Calculation
based on a simple analytic continuation of the results obtained forn > 1 are thus bound to
fail. The replica method with one step RSB manages to compute〈zm〉 with m = µ, which
precisely picks up the contribution of the typical region ofz. (Smaller values ofm would
be mostly sensitive to very smallz, while largerm’s probe atypically large values ofz.)
The algebra corresponding to one-step RSB exactly reproduces the extreme-value statistics
in the case of fast decaying distributions. In this respect, RSB does not mean more than a
‘localization’ of weights onto a small subset of all configurations, in the sense that major
contribution to the partition function comes from a finite number of configurations (i.e. all
Yk > 0) [12]. Actually, the quantitiesYk were also introduced in the context of electron
localization in disordered potentials, and called ‘participation ratios’ [13].
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4. A d-dimensional random energy model

In this section we want to study a generalized version of the REM, where the energy levels
are embedded in a Euclidean space. Besides its intrinsic interest as a model for a particle
in a disordered environment, this problem also turns out to be directly relevant to the study
of declining Burgers turbulence, as we shall discuss in detail in the next section.

The model is defined as follows. To each pointx of a (discretized)d-dimensional space,
one assigns a potential energyE(x) which is a random number picked up independently
on each point, from a distributionP(E) the tail of which is given by (1). The total energy
on this point is the sum of a deterministic part, which we take for instance equal toκx2/2,
and this random contributionE(x). This defines a certain energy landscape, to which we
associate a partition functionZ as

Z =
∫

ddx exp

(
−V (x)

T

)
V (x) ≡ κx2

2
+ E(x). (34)

Here we adopt a continuum notation but an ultraviolet cut-off (lattice spacing) is implicitely
assumed when necessary. The role of the deterministic part proportional toκ is two-fold.
First of all it allows us to define a topology in the space of the pointsx (The limit κ = 0
coincides with the REM, the fact that the points sit in ad-dimensional space is irrelevant).
For this purpose the deterministic part could be rather arbitrary, and indeed we can solve
the problem with a more general deterministic energy. As we shall need a quadratic term
later on, and in order to keep the presentation simple, we restrict ourselves to this particular
case. Second, the presence of this confining term allows us to deal with this model without
the need to introduce a finite box.

This model withd = 1 was in fact introduced and studied long ago as a toy model of an
interface in a random medium [14]: one possible interpretation is thatx is the coordinate of
a particular point on the interface, which feels a random pinning potentialE(x), while the
quadratic potential is a mean-field description of the elasticity due to the rest of the interface.
Another interpretation (in the context of Bloch walls) is to neglect the deformation of the
interface, which is only described by its centre of mass coordinatex. The quadratic potential
is then induced by the demagnetizing fields due to the surrounding Bloch walls.

We want to compute the low-temperature properties of this system in the limit when
κ → 0. For instance one would like to know the typical displacement of the ground state,
measured through〈x2〉, or the average ground-state energy, etc. In the special case where the
energy is Gaussian distributed, this problem has already been studied by scaling arguments
[14], or with a Gaussian replica variational method [15]. We shall provide hereafter the
exact solution, first using a direct extreme-value statistics approach and then with the replica
method.

4.1. Extreme value approach

For simplicity, we restrict ourselves to the cased = 1; the extension to higher dimensions
is however immediate. For temperatures going to zero, we want to find the minimum of all
the energiesκ2x

2+E(x) whenx scans a one-dimensional lattice. The joint probability that
this minimum is achieved on a pointx∗ and takes a valueV (x) = κ

2x
∗2+ E is given by

P(x∗, E) = P(E)
∏
x ′ 6=x∗

(
1− P<

(
E + κ

2
x∗2− κ

2
x ′2
))
. (35)
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For κ → 0 we can safely take a continuum limit and we obtain

P(x∗, E) = P(E)

1− P<(E) exp

(∫
dx ′ log

[
1− P<

(
E + κ

2
x∗2− κ

2
x ′2
)])

. (36)

Integrating overE we get the probability that the minimum is achieved on pointx∗. For
small κ, the minimumE is expected to be negative and large, and hence only the region
whereP< is small will be of importance. Rescalingx∗ asx∗ = x̂∗/√κ, we obtain

P(x̂∗) '
∫

dE P(E)exp

(
−
∫

dz√
κ
P<

(
E + x̂

∗2− z2

2

))
. (37)

For smallκ it is thus clear that the relevant energy region is the one around the valueEc

such thatP<(Ec) = √κ, or

Ec = −
(

log(1/
√
κ)

B

)1/δ

. (38)

(Note that the role played here by the numberM of energy levels in the first section
is the length scale 1/

√
κ, which is natural.) Expanding the energy aroundEc as E =

Ec− x̂∗2/2+ ε, we obtain

P<

(
E + x̂

∗2− z2

2

)
∼ √κ exp

(
δB|Ec|δ−1

(
ε − z

2

2

))
. (39)

The integral overz in (37) is a thus a Gaussian integral. We finally obtain, after a simple
integration overε

P (x̂∗) ∝ exp

(
−δB|Ec|δ−1 x̂

∗2

2

)
. (40)

Therefore we have shown that the typical distance to the origin of the pointx∗ corresponding
to a minimum energy is

ξ = (κδB|Ec|δ−1)−1/2 = 1√
κδ

(
log

(
1√
κ

))1− δ
2δ

B−
1
2δ (41)

and more precisely the distribution ofx∗/ξ is a Gaussian of unit variance†. We can also
compute the probability distribution of the ground-state energyV∗ as

P(V∗) =
∫

dx
∫

dE δ
(
V∗ − κ

2
x2− E

)
P(x,E) (42)

whereP(x,E) is given in (36). The result is the following: introducing the rescaled energy
u as

V∗ = Ec+ 1

2Bδ|Ec|δ−1
log

[
Bδ|Ec|δ−1

2π

]
+ u

Bδ|Ec|δ−1
(43)

one finds thatu is distributed according to the universal Gumbel distribution, equation (7).
In particular, the extremely deep states are again exponentially distributed, as exp[µV∗/T ],
with µ = T Bδ|Ec|δ−1.

† Note that for smallκ we haveκξ2 � |Ec| which justifies our expansion aroundEc in the derivation ofP(x̂∗).
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4.2. Replica approach

Interestingly, the replica approach with a one-step RSB also leads to theexact result.
Introducing again the generating functiong(λ) of P(E), we have

Zn =
∑
x1,...xn

exp

[
− κ

2T

n∑
a=1

x2
a +

∑
x

g

(
1

T

n∑
a=1

δx,xa

)]
. (44)

The leading saddle point at low temperature is given as in (23) by grouping thexa in n/m
packets ofm replicas. Within one packet all thexa are equal, and the Gaussian integration
over the position of each packet gives

Zn = exp
n

m

[
1

2
log

2πT

κm
+ g

(m
T

)]
≡ exp− n

T
f (ρ) (45)

with ρ = m/T . Looking for the extremum off as a function ofρ we find, in the limit
κ → 0 (and withδ > 1),

ρ∗ = δB1/δ

(
log

1√
κ

)(δ−1)/δ

≡ Bδ|Ec|δ−1 (46)

whereEc is given by equation (38). It is easy to check that the free energyf (ρ∗) precisely
reproduces the above result for the ground-state energy obtained directly, equation (43). As
explained above, the calculation of the quantitiesYk within the replica method indicates that
the low energy states are exponentially distributed with a parameter given byρ∗ = m/T .
Hence, comparing (43) and (46), we see that the replica method indeed predicts the correct
statistics of deep states. The replica method also allows us to calculate

P(x) =
∑
x2,...xn

exp

[
− κ

2T

n∑
a=1

x2
a +

∑
x

g

(
1

T

n∑
a=1

δx,xa

)]∣∣∣∣∣
x1=x

. (47)

Within the above one-step solution, this immediately leads to the following Gaussian result:

P(x) =
√
κρ∗

2π
exp−κρ

∗x2

2
(48)

which is identical to equation (40). The replica method also allows us to discuss the nonzero
temperature regime, which is much harder to study directly. As shown above, there is a
phase transition towards a ‘delocalized’ phase whereYk ≡ 0 whenµ = ρ∗T = 1†. Note
that for any small but nonzero temperature and forδ > 1, the system eventually reaches
µ > 1 whenκ → 0. This can be interpreted as follows: asκ → 0, the number of accessible
states diverges. But since the difference between the ground state and the first excited state
decreases as|Ec|1−δ (whenδ > 1), it does become smaller thanT for a sufficiently smallκ,
beyond which a large number of quasi-degenerate states contribute to the partition function,
as in the high-temperature phase. Only forδ = 1 is there a true transition temperature,
independent ofκ (see [16] for a discussion of this point in a different context). Forδ < 1,
one expects a first-order phase transition (see above).

Finally, let us note that in the case where the confining potential is harmonic (i.e. equal
to κx2/2), the Gaussianvariational replica method developed in [7, 17] also gives theexact
result forρ∗.

† Note, however, that there is a true phase transition only in the limitκ → 0 or d → ∞, i.e. when the number
of degrees of freedom is infinite. Otherwise, the transition forµ = 1 is really a crossover.
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4.3. Physical interpretation of the replica solution

Using the replica method, we can also compute higher moments ofP(x), such asP(x)P (y),
etc. One can then show that the replica solution is identical to the following probabilistic
construction forP(x) for a given sample:

P(x) = 1

Z
∑
α

wαδx,xα (49)

where thewα are random weights, chosen with a probability distribution given by
equation (13), and thexα are random variables, independent from thew’s, and chosen
according to a Gaussian of widthκ−1.

5. The random energy model and Burgers turbulence

5.1. The Cole–Hopf transformation

It is well known that the solution of Burgers equation with a random initial velocity field
can be expressed as a partition sum of the form equation (34). Let us restrict ourselves
for simplicity to one dimension, although, again, generalization to higher dimensions is
possible. The Burgers equation in the absence of forcing reads

∂v

∂t
+ v ∂v

∂x
= ν ∂

2v

∂x2
(50)

where ν is the viscosity. The initial velocity fieldv(x, t = 0) will be chosen as
v(x, t = 0) = ∂E(x)

∂x
. Writing v = −2ν ∂ logZ

∂x
allows us to transform the Burgers equation

into the following linear diffusion equation (Cole–Hopf transform):

∂Z
∂t
= ν ∂

2Z
∂x2

(51)

with initial conditionZ(x, t = 0) = exp[−E(x)/2ν]. The solution thus reads

Z(x0, t) =
∫ +∞
−∞

dx√
4πνt

exp

(
− 1

2ν

[
(x − x0)

2

2t
+ E(x)

])
(52)

which is, up to a multiplicative factor, identical to the ‘spatial’ REM defined by (34) with
the following identification:

T → 2ν κ → 1

t
. (53)

Physically, the disordered problem associated with this REM is that of a point particle
interacting with a (random) pinning potentialE(x), attached by a spring to pointx0, which
is a simplified model for an extended elastic object in a random potential. This model was
recently considered in the context of solid friction [18].

Although the two problems, spatial REM on one hand and decaying Burgers turbulence
on the other hand, are formally identical, they may differ by the type of questions one wants
to address. For instance in turbulence one is interested in the correlations of velocities,
which involves knowing the variations of the free energy of the REM (52) whenx0 varies.
The case whereE(x) is random with short-range correlations correspond to a short-range
correlated velocity fieldv(x, t = 0) with a ‘blue’ spectrum (i.e.|v(k, t = 0)|2 ∝ k2, where
k is the Fourier variable) and the small viscosity (large Reynolds) limit corresponds to small
temperature in the associated disordered problem.
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Figure 2. Graphical solution of the Burgers equation in the limit of small viscosity, in the
neighbourhood of a cusp. The broken curve is the original potentialE(x), while the full curve
corresponds to the effective potentialV∗(x). The curves actually continue beyond the cusp of
V∗(x), where one metastable and one stable saddle point coexist.

5.2. Cusps and shocks

In the zero-viscosity (or zero-temperature) limit, the partition function (52) can be evaluated
by a saddle-point method. For a fixedx0, one looks for the value ofx∗ such that
κ(x0 − x∗)2/2 + E(x∗) is minimum. The saddle-point construction [8] is graphically
explained in figure 2, for a simple profileE(x). For a givenx0, one draws as a function of
x the parabolaV−κ(x0−x)2/2 and looks for the minimum value ofV, calledV∗(x0), such
that this parabola intersects the curveE(x); callingx∗ the intersection point, the saddle-point
approximation gives

Z(x0, t) ' exp

[
−V

∗(x0)

2ν

]
' exp

(
− 1

2ν

[κ
2
(x0− x∗)2+ E(x∗)

])
. (54)

For large values ofκ, the parabola is very sharp, and there is only one ‘optimal’
intersection pointx∗ for each value ofx0; to a first approximation, one thus hasZ(x0, t) '
exp[−E(x0)/T ]. On the other hand for very smallκ, which corresponds to the large time
limit of the decaying Burgers turbulence, the parabolaV−κ(x0−x)2/2 is extremely flat and
the intersection points will be determined by the extreme (negative) values of the potential
E(x). In this limit, the statistics of the effective potentialV∗—and thus of the velocity
field v(x, t)—reflects the statistics of the extreme values ofE(x), and is thus, to a large
degree, universal. Generically, the solutionx∗ depends very weakly onx0 and the effective
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potentialV∗(x0) can thus approximately be written as

V∗(x0) ' κ

2
(x0− x∗)2+ E(x∗) (55)

with a fixed x∗, whereE(x∗) corresponds to a particularly ‘deep’ minimumx∗ of the
potentialE(x). This is the generic situation when one variesx0 locally; it corresponds to a
velocity field which is locally linear:

v(x0) = dV∗(x0)

dx0
= κ(x0− x∗). (56)

(Remember that by definition∂V∗/∂x∗ = 0.) There exist, however, exceptional valuesxs of
x0 such that the first intersection of the parabola and the curveE(x) appears simultaneously
at two pointsx∗1 < x∗2: whenx0 varies fromxs − ε to xs + ε, the solutionx∗ jumps from
x∗1 to x∗2. This corresponds to a cusp in the minimum valueV∗ as a function ofx0 (see
figure 2). In the language of Burgers turbulence, this is a shock since the velocityv (which
is the derivative ofV∗) is discontinuous atx0 = xs .

5.3. Decay from an uncorrelatedE(x) configuration: Kida’s analysis

Let us now focus on the case whereE(x) is randomly distributed with a short-range
correlation, and the timet is large, corresponding to a very smallκ. This limit was
studied in detail by Kida in the context of Burgers equation [9] (see also [19]). Let us
denote byxα the various values of the intersection points between the parabola and the
curveE(x) when one variesx0. After a proper coarse graining we can totally forget about
the correlations ofE(x), and thus the{xα} are randomly (Poisson) distributed along the
x-axis. If the distribution ofE decays as exp−B|E|δ, the extreme-value statistics tells
us that the distribution ofEα ≡ E(xα) is of the Gumbel type. The only delicate point is
to understand what is the effective number of independent variables,M, appearing in this
distribution is. This number depends onκ and is determined self-consistently as follows:
asx0 departs fromxα, at some point (because of the quadratic growing termκ(x0−xα)2/2)
a better saddle pointxβ will be preferred. Since the width of the Gumbel distribution is
given by

1

δB1/δ
(logM)

1−δ
δ (57)

(see equation (6) above), this sets the order of magnitude of the difference betweenEα and
Eβ , which must also be, by definition, of the order ofκ(xα − xβ)2. Furthermore, taking
the correlation length of the potentialE(x) to be one, the effective number of independent
variables is given by

M = |xβ − xα| ' 1√
κδB1/δ

(logM)
1−δ
2δ (58)

or, to logarithmic accuracy, and using the correspondanceκ → 1/t ,

M ∝ √t(log t)
1−δ
2δ . (59)

Note that by definition,M is also the typical distance beween two shocks`(t), which is thus
seen to grow ast1/2 with logarithmic corrections (these corrections disappear forδ = 1,
where the initial potential already possesses the universal exponential tail). This is one of
the important results of the original analysis of Kida. Furthermore, since the local slope of
the velocity isκ = 1/t , the maximum velocity is of order

vmax= `(t)

t
' (log t)

1−δ
2δ√

t
(60)
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which corresponds to a time dependent Reynolds number

Re = vmax̀

ν
∝ (log t)(1−δ)/δ

ν
(61)

which goes to zero (albeit very slowly) whent →∞ for δ > 1. This is similar to the above
remark that for any small temperature, the system goes back into its high-temperature phase
whenκ → 0.

Using this construction, and the full distribution of theEα, Kida was able to obtain
directly the large time behaviour of the two-point velocity correlation,v(x)v(x + r), which
is a universal function once the lengths are expressed in terms of the mean distance between
two shocks̀ (t), and the velocities in units ofvmax [9]. His result is recalled in the appendix.
Let us show how we can obtain precisely the same results using the replica method, which
in fact provides the full probability distribution function ofv(x + r)− v(x).

5.4. The replica analysis

Let us first note that equation (54) can alternatively (in the limitκ, T → 0) be written as
an infinite sum:

Z(x0) = exp[−V∗(x0)/T ] =
∑
α

wα exp

[
−κ(x0− xα)2

2T

]
(62)

wherexα are Poisson distributed with an arbitrary (see below) linear densityσ . Thewα
are independent random variables again chosen according to the distribution (13), withµ

given byµ = T/1(M)
µ = T δB1/δ(logM)−

1−δ
δ . (63)

That equation (62) precisely reproduces Kida’s construction comes from the fact that,
as T → 0, the distribution of weights becomes so broad that the sum determining
Z(x0) becomes entirely dominated by a single term, which is the one which maximizes
wα exp[−κ(x0−xα)2/2]. Again, the correspondingxα switches discontinuously as a function
of x0, when another valuexβ suddenly takes over. This construction is independent of the
densityσ , provided thatσM � 1 (i.e. in the long time limit).

The crucial point now is that the explicit construction (62) actually gives results which
are identical to those obtained using a replica representation:

Z(x1)Z(x2) . . .Z(xn) =
∑
π

exp

[
1
2

n∑
a,b=1

Rπ(a),π(b)xaxb

]
(64)

in the limit n → 0. In the above expression,π denotes a permutation of then replica
indices, and theRab matrix is a one-step RSB matrix [1] with elementsRab = R1 when
a andb are in the same diagonal block of sizem, Rab = 0 whena andb are in different
blocks, andRaa = (1−m)R1, enforcing the sum rule

∑n
b=1Rab = 0. It has been shown

in [20] (and we recall the main steps of the derivation in the appendix) that the velocity
correlation functionv(x, t)v(y, t) can be computed either directly from equation (62), or
using the representation (64).

To test this equivalence of the three constructions of the partition function (54, 62,
64), we show in the appendix that, after a proper choice of length and velocity scales, the
v(x, t)v(y, t) correlation function is indeedidentical to the result obtained by Kida (see
appendix). The present formalism allows us to extend Kida’s results in several directions.
For example, the full probability distribution function ofv(x) − v(y) can be computed as
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in [20]. The problem of decaying Burgers turbulence in higher dimensions can also be
addressed.

Let us finally note that the presence of shocks, which manifests itself as a|x − y|
singularity in v(x, t)v(y, t) at short distances, is intimately connected with the breaking
of replica symmetry [20, 5]: for a replica symmetric matrixRaa = R̃, Ra 6=b = R1 for
all a 6= b, v(x, t)v(y, t) is regular for x → y. As discussed above, these shocks reflect,
in the associated disordered problem, the existence of somemetastability(see figure 2).
From a technical point of view, it is interesting to see in this example how metastability
is associated with RSB and, as emphasized in [5], with the existence of a short-distance
singularity in the effective free-energyV∗. Precisely the same behaviour is obtained via
the functional renormalization group (FRG) [21]: a singularity appears in the renormalized
correlation function of the effective free energy at scales larger than the ‘Larkin length’,
which is the scale beyond which metastability effects become important. (However, the
way to handle the shocks correctly within the FRG is still an open problem [5].)

6. Perspectives and other universality classes

As is the case for the central-limit theorem, there are other universality classes, distinct
from the Gaussian, when one relaxes the hypothesis of a finite variance or of independent
variables (or both) [10]. This is also true for the statistics of extremes, and it is interesting
to discuss how this might translate into a replica language. Two main directions can be
thought of: independent variables with other types of distributions, or correlated variables.
• Independent random variables. Fréchet and Weibull classes.
Let us first consider the case where the energy levelsEi are still independent, but with a

tail for large negativeE decaying as a power law,|E|−1−δ. In this case, the extreme values
are distributed according to the so-called Fréchet distribution, which is different from the
Gumbel distribution (for example, it decays asymptotically as a power law with the same
exponentδ). RescalingE byM1/δ to keep the gap between the ground state and first excited
state finite asM →∞, we can calculate the quantitiesYk defined in (14). We find, forM
large but finite

Yk = 1− exp−
(

1

T logM

)δ
(δ < 1) (65)

independentlyof k. (Similar results are obtained forδ > 1.) This is clearly different form
equation (14). Note that this case cannot be addressed within the replica method without
some modifications since all the positive momentsZn, n > 0 diverge!

Another universality class corresponds toEi which are strictly bounded, i.e.Ei = E0+ε,
with ε > 0. More precisely, the distribution ofε for ε → 0 is of the formP(ε) = εδ

for ε small. The resulting distribution of extremes is then called the Weibull distribution.
Rescaling the energies by a factorMδ+1, we find through a direct computation thatYk is
nontrivial for all temperatures, i.e. the model is always in a low-temperature phase. For
instance, in the caseδ = 0 one getsYk(T →∞) ∼ kT 1−k, andYk ∼ 1−CT for T → 0 (C
is Euler’s constant). This is again clearly different from the one-step RSB result (14). One
might hope that such a situation will lead to a new type of RSB, but the situation seems
more complicated. In the particular caseδ = 0, one finds

Zn =
∑
i1,...in

′∏
i

T∑n
a=1 δi,ia

(66)
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where the product is only over the sitesi such that
∑n

a=1 δi,ia > 0. The entropy of the
replica symmetric solution becomes negative below the temperatureTc = 1/e. Assuming
a one-step RSB saddle point forT < Tc leads to a constant average energy, equal to 1/e;
however, the true ground-state energy can be calculated directly and is equal to one. The
problem seems to be that the free energy cannot be calculated by asaddle-pointmethod in
the replica method: replica fluctuations are always important.

In any case, from the point of view of Burgers turbulence, one should keep in mind that
initial conditions for the velocity field which do not belong to the exponential universality
class considered by Kida will lead to rather different flow structures at long times, even
within the class ofE(x) functions with local correlations. The bounded case has actually
been studied recently by Newman [22].

Let us now turn to the case where theEi are Gaussian but long-range correlated; for
example the case whereE depends on ad-dimensional space variablex, and such that

Ẽ(q)Ẽ(q′) = δ(q + q′)
q2−η (67)

leading to

(E(x)− E(y))2 ∝ |x − y|max(0,2−d−η). (68)

The caseη = 0, d = 1 corresponds to a random walk forE(x), which has been studied
in detail both in the context of Burgers turbulence [8], and also as a partly solvable model
of a particle in a random potential [14, 23, 24]. The generalη, d case has not been solved
yet. It has been studied by the Gaussian variational replica formalism of [7], which shows
[15] that the caseη < 2− d (corresponding to a growing correlation function (68)) requires
‘continuous’ RSB, while the caseη > 2−d only requires a ‘one-step’ breaking. Independent
variables correspond toη = 2, i.e. a white spectrum forE(q). We conjecture here that the
caseη > 2− d belongs to the same (one-step RSB) universality class as the REM (η = 2).
It is actually not difficult to show directly that the quantities

cn = Z
n − Zn

Zn
n = 2, 3, . . . (69)

diverge with the system size below a certainn-dependent critical temperature which is
independent ofη for η > 2− d, and identical to those found in the REM. This suggests
that the one-step solution indeed remainsexact for all η > 2− d. Preliminary numerical
simulations [25] seem to confirm this. This points towards a rather natural result, namely the
fact thatweak enough correlations(measured here by 2− η) between the random variables
do not change the universality class for the extreme-value statistics. This conjecture is
supported by a theorem for the cased = 1: for all η > 1, the extreme-value statistics is
indeed of the Gumbel type†, while some corrections appear in the marginal caseη = 1.
This conjecture is stronger, since it requires that not only the ground state, but also the
low-lying energies are independent random variables with an exponential distribution. A
special case of this conjecture, supported by numerical simulations, was proposed recently
for the d = 2 problem withη = 0, which corresponds to the localization of electrons in
a random magnetic field [13]. In this two-dimensional case, the choiceη = 2− d = 0
corresponds to a marginal logarithmic growth of the correlations.

Returning to the one-dimensional case, the situation changes drastically whenη < 1,
which corresponds to a typically ‘growing’ profileE(x). The ratioscn defined by (69)
diverge with the system size for all temperatures, suggesting indeed a change of universality

† See theorem 3.8.2, [3].
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class. The only known possibility at present is then to describe the system within a
‘continuous’ RSB, which can be interpreted as a recursive tree-like construction of the
low-lying energy state. In particular, the correlation of the low-lying states have a well
known ultrametric structure. How well this ultrametric structure (known to be exact for the
case where the dimension ofx is infinite) reproduces the distribution and correlations of
the low-lying states in finite dimensions is an open problem† which we leave for further
studies [25].

It would also be interesting to think of the spin-glass problem from the point of view
of the classification of very low-energy states and excitations, which could perhaps provide
a natural link between replicas and ‘droplet-like’ descriptions [26].
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Appendix

In this appendix we explain briefly how the replica method and the direct probabilistic
analysis lead to the same result for the two-point correlation function in decaying Burgers
turbulence at large times. We are interested in the case whereE(x) has local correlations
(see section 5.3), in which case the result of Kida reads

v(x)v(x + r) = v2
maxH

(
r

`(t)

)
(70)

where`(t) is the mean distance between two shocks,vmax= `(t)/t , and

H(x) ≡ 1√
2π

d

dx
x

∫ ∞
0

dy

φ(x + y)+ φ(x − y) (71)

andφ is an error function:φ(x) = ∫∞0 dz exp(−z2+√π/2xz).
We shall sketch how these results can be obtained from the replica representation (64).

The computations are lengthy and already contained in some previous papers. Here we just
want to help the interested reader to find his way in the literature in order to obtain the
result. One starts from the replicated partition function (64)

Z(x1)Z(x2) . . .Z(xn) =
∑
π

exp

[
1
2

n∑
a,b=1

Rπ(a),π(b)xaxb

]
(72)

where theRab matrix is a one-step RSB matrix [1] with elementsRab = R1 whena andb
are in the same diagonal block of sizem, Rab = 0 whena and b are in different blocks,
andRaa = (1−m)R1, enforcing the sum rule

∑n
b=1Rab = 0. The first step, derived in [20,

appendix D], deduces from (72) the correlation between the powersn/2 of the partition
function

Z(x, t)n/2Z(y, t)n/2 = 2n

B(−n/2,−n/2)
∫ ∞

0

dµ

µ
µ−n/2

[
m
√
R1

2π

∫
dz (ex + µey)m

]n/m
.

(73)

† Note that the average ground-state energy predicted by the Gaussianvariational replica theory does not lead
back to the exact result [24] in the soluble random walk caseη = 0.
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where we have defined

ex ≡ e−mR1(z−x)2/2 ey = e−mR1(z−y)2/2. (74)

Using the general linkv = −2ν ∂ logZ
∂x

, one obtains

v(x)v(y) = lim
n→0

16ν2

n2

∂2

∂x∂y
Z(x, t)n/2Z(y, t)n/2 = (2νmR1)

2(g11+ g12) (75)

where we have defined (the notations are those of [20, appendix B])

g11 = (1−m)
∫ ∞

0
dµ

∫
dz (ex + µey)m−2(x − z)ex(y − z)ey∫

dz (ex + µey)m (76)

and

g12 = m
∫ ∞

0
dµ

(
∫

dz (ex + µey)m−1(x − z)ex)(
∫

dz (ex + µey)m−1(y − z)ey)∫
dz (ex + µey)m . (77)

This expression could also be derived directly without replicas from the infinite sum (62),
with the identificationm = µ, R1 = κ/(T µ) as can be seen from [20, formulae (B10),
(B11) (where the number 1/(mR1) was calledδ). The whole problem is now to evaluate
this expression in the limit of large Reynolds, which means smallµ or low T . In this
regime, using the fact thatm scales linearly withT andR1 scales as 1/T 2, it has been
shown in [20, appendix B], that expression (75) reduces to

v(x)v(y) = κT

µ

(√
2

π

∫ ∞
0

dh
e−h

2/2[h2− d2/4]

ed2/8[e−hd/2M0(h− d
2)+ ehd/2M0(−h− d

2)]

− d
π

∫ ∞
0

dh
e−h

2

ed2/4[e−hd/2M0(h− d
2)+ ehd/2M0(−h− d

2)]
2

)
(78)

where

M0(x) =
∫ ∞
x

dz√
2π

e−z
2/2 d = |x − y|√

T/(µκ)
. (79)

So the natural length scale appearing in this solution is` = √T/(µκ). Using (63) and (59),
one sees easily that it precisely scales at large times as the average distance between shocks
of Kida’s analysis. In terms of reduced lengths, we can check that the two distributions
(78) and (71) are actually identical.
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[20] Bouchaud J P, Ḿezard M and Parisi GPhys. Rev.E 52 3656
[21] Fisher D S 1986Phys. Rev. Lett.56 1964

Balents L and Fisher D S 1993Phys. Rev.B 48 5949
[22] Newman T J 1997Preprint cond-mat/9704119
[23] Monthus C and Comtet A 1994J. PhysiqueI 4 635

see also Oshanin G, Mogutov A and Moreau M 1993J. Stat. Phys.73 379
[24] Broderix K and Kree R 1995Europhys. Lett.32 343
[25] Baldassarri A, Bouchaud J P and Ḿezard M in preparation
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