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Abstract. The equilibrium low-temperature physics of disordered systems is governed by the
statistics of extremely low-energy states. It is thus relevant to discuss the possible universality
classes for extreme-value statistics. We compare the usual probabilistic classification to the
results of the replica approach. We show in detail for several problems (including the random
energy model and the decaying Burgers turbulence) that one class of independent variables
corresponds exactly to the so-callede step replica symmetry breakisglution in the replica
language. We argue that this universality class holds if the correlations are sufficiently weak, and
propose a conjecture on the level of correlations which leads to different universality classes.

1. Introduction

The replica method is one of the very few general analytical methods available to investigate
disordered systems [1]. Although the physical meaning of Parisi’'s ‘replica symmetry
breaking’ (RSB) scheme needed to obtain the correct low-temperature solution of various
random models has already been discussed on several occasions [1], its precise relation with
the so-called extreme-value statistics [2, 3] (and therefore its scope and limitations) was not
previously clearly established. That such a relation should exist is however intuitively
obvious: at low temperatures, a disordered system will preferentially occupy its low-energy
states, which are random variables because of the disordered nature of the problem. The
statistics of the free-energy (or of other observables, such as epanggrs [4, 5]) will thus

reflect the statistics of these low-energy (extreme) states. It is well known in probability
theory that extreme-value statistics can be classified into different universality classes [2, 3].
Conversely, the RSB scheme has shown the existence of at least two broad classes of
systems, those with a first-order, ‘one-step’ RSB and those with continuous RSB.

It is easy to identify the ‘one-step RSB’ class with one particular universality class of
extreme-value statistics, i.e. the Gumbel class, which concerns the minimum of continuous
variables which are unbounded but have a distribution decaying faster than any power at
—oo. The simplest representative of this class is the random energy model (REM) [6], where
the energy states are independent (but not necessarily Gaussian distributed). An interesting
point is that the REM can be given a spatial structure, for which the replica theory still
provides theexact solution. This spatial REM is in turn connected, in one dimension, to
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the problem of decaying Burgers turbulence [8] in which an infinitely compressible fluid
evolves from random initial conditions. Exact results for the velocity correlations at large
times in Burgers turbulence were obtained long ago by Kida [9]. We shall show that these
results coincide with those of the replica method, the underlying reason being that the late
stage of turbulence decay is governed by the extreme values for the integral of the initial
velocity field.

It is less easy to identify the other universality classes of extreme-value statistics. There
should be at least two types of generalizations. One type still consetapendentandom
variables but with either power-law decay of the distribution (in which case thereti®ri
no replica formalism), or bounded random variables (the Weibull distribution of extremes),
which does not seem to correspond to any known RSB scheme. The other type concerns
correlated variables, for which the only results known to us are actually derived in the
framework of replicas: those are cases of full RSB, which describe random variables with
a certain (hierarchical) type of correlations.

These universality classes are the counterpart for extremes of random variables to the
usual universality classes studied in the framework of sums of random variables. Taking the
well known example of random walks or polymers, the usual random walk, or ideal polymer,
is described asymptotically by the Gaussian central-limit theorem, while the addition of
independent variables with infinite variance leads to new universality claségg dums)

[10]. The introduction of long-range correlations such as self avoidance also leads to totally
new universality classes [10]. We wish here to take a first step in an analogous categorization
for extreme values, which appear naturally in disordered systems at low temperatures. We
thus often rely on existing results and put them in this perspective. While the aim of this
paper is mainly methodological, it also contains the following new results: a version of the
REM with a first-order phase transition (section 3.2), or with no transition (section 6), a
reformulation of Kida's results on the statistics of shocks in declining Burgers turbulence
using replicas (section 5.3), and a conjecture on the amount of correlations we can add to
the REM without changing the universality class of the low-temperature phase (section 6).

2. Extreme-value statistics

2.1. Scaling regime

We start by recalling standard results of extreme-values statistics, in order to set the stage for
the following discussions. Considéf independent, identically distributed random variables
E;,i =1, ..., M (‘energies’), such that the probability distribution decays fpr— —oo

faster than any power law:

P(E) ~

EF exp[-B|E|%] B,§>0 E — —o0. 1)

We are interested in the statistics of the lowest energy #tate min{E,, ... E,,} for large
M. Defining P_(E) as the repartition function of

E
P_(E) = / dE’ P(E) )

we can express the distributiaPy, of E* as

d

%\ * _ M-1 _
Py(E*) = MP(EM)[1 —P(EHY " = dE*

[P-(E)]Y ®)
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For largeM, the minimumE* will be negative and large, so that

[1 = Po(ENNY = exp[-MP(E)]. @
The repartition function ofE* thus becomes very small wheh* is smaller than the
characteristic value of the energy.(M) defined by MP_(E;) = 1. To logarithmic
accuracy, this gives in the case of the distribution (1)

log M\ Y*
) ®

The value of the extremg™* fluctuates around.. By expanding (4) inE* — E.)/E., one
sees that the size of fluctuations is
1
AM)= -~ 6
B3| Ec|(M) (©)
More precisely, the rescaled minimum energy variable (E* — Ec(M))/A(M) obeys,
for large M, a universal ‘Gumbel’ distribution [2, 3]

P*(u) = exp(u — expu). )

The maximum ofP*(u) occurs atu = 0, meaning thak.(M) is actually the most probable
value for the extreme energy. Finally, as in any ‘central-limit theorem, this behaviour
is only valid in the region where the deviatian from E; is of the order of A(M),
which goes to zero withV/ if § > 1 and diverges otherwise. Thelative fluctuations
A(M)/E.(M), however, are always of ordery lbgM. A very important property, which

we shall emphasize later on, is thBt(x) vanishes exponentially far — —oo. In the
scaling region, the probability for a given enerflyto be E; = E.(M) + A(M)u; behaves

as (c/M)expu;). So the low-lying energies are independent random variables which are
exponentially distributed.

Eo(M) ~ — <

2.2. The large M limit and the random energy model

Let us now consider the following partition function:

M Ei
Z=) "z m=em{—T} ®)
i=1

where theE; are distributed as in (1). This is a slight generalization of Derrida’s original
REM, initially introduced with a purely Gaussian distributioh £ 2). Obviously, the
independent variables, are large wherk; is large and negative. In the scaling region
defined above, the exponential distribution of the rescaled energy translates into a power-
law decay ofP(z) for largez:

P(z) o z 1+ Z—> 0 )

wherepn = T/A(M). The partition sumZ behaves very differently in the regign < 1,
where the average value efdiverges and thus only a small nhumber of terms (those of
order M*/1) contribute toZ, and in the region > 1, where all theM terms give a (small)
contribution toZ. This means that for

Te = A(M) (10)

for which © = 1, the probability measure concentrates onto a finite number of states,
corresponding to the glass transition in these models. In the random-energy mbdel,
the number of stated/ = 2V. By choosingB = N9, it is possible to ensure both an



8000 J-P Bouchaud and M E¥ard

extensive ground-state energl.(x N) and a finiteT; in the largeN limit. Let us now
study the statistics of the weights = z;/Z in the glassy regiol < T;. Since
i

P = 11

W= (11)

whereZ’ = Zk(;&i) zx is independent of; (and of orderM*/#), one readily finds théat
z Z'w

For w; to be nonzero in the larg# limit, z; has to be large. In that region we can use the
asymptotic form (9) forP(z), giving

c
P(w) = M(l —w)t Ly w > MY (13)

whereC is a constant fixed by the conditioW fol dw wP(w) = 1. From this probability

distribution of each weight, we can deduce the momé&pts Y, w¥, which characterize to

what extent the measure concentrates onto a few states: if all weights are of the same order
of magnitude, therv, ~ M** — 0 for k > 1; while if only a finite number of weights
contribute, the momentg, remain finite whem — oo. In this case, one finds, far < 1,

Ik —u]
FIACL — ] (k > p) (14)
(see also [11]). Sincg = T/T;, one finds that’, goes linearly to zero fof" — T, and
thatY, = 1— (I""[k] -T'[1])/TC[k])T/T. for T — 0. Finally, the average energy per degree
of freedom of the system is constant throughout the low-temperature phaseTt) and
given by E/N = E./N + O(1/N) ~ —(log 2)*/%.

1
Yk=M/ dw w*P(w) =
0

3. The replica approach

3.1. The REM

We shall now show how all these results can be recovered using the replica method. We
suppose thaé > 1 (the caseS < 1 will be discussed in section 3.2) and introduce the
characteristic functiorg (1) through

/OO dE P(E) exp[-AE] = explg(V)]. (15)

Since B = N9, this integral can be computed at large with a saddle-point method,
which gives

5 \*/81
g) =@ —-1N <8> . (16)

In the replica method we need to compute the moments oftldistribution:

Zi= Y gneu= Y exp[—;ZEiiai,i,} (17)
i a=1

i1,12,...0n i1,02,...0n

Averaging over theE; gives

Zrn= Y exp[Zg(iaX:a,»,iJ]. (18)

11,20

1 We denote ag(.) the probability density of the variable appearing in the parentheses.
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The point now is to understand which configurations{af i, ...i,} will dominate the
above sum wheN — oo (andn — 0). The simplest Ansatz, corresponding to the largest
phase-space volume, assumes that,adlre different, leading to

Zi=MM-1)..(M—n+1) exp[ng (;)} ~ exp[n (IogM +g (;))] ) (19)

Takingn — 0, one thus finds that the free energy per degree of freeﬂom—%logz
takes the value

f=fo=-Tlog2— (§ — 1) 71T 51, (20)
The entropyso = —dfo/dT is therefore equal to
so=log(2) — (6T) 1 (21)

and becomes negative below a critical temperature
1 _
To= log(2) 7 . (22)

So this solution, called ‘replica symmetric’ (since all repliéaplay a symmetric role), has

to be modified in the low-temperature phase. The correct configurations which dominate
the sum (18) a’" < T; are called ‘one-step RSB’ and are such thatiheeplica indices

{i1, i, ...1,} are grouped inta/m groups ofm equal indices, which can be written, after
proper relabelling:

11—122...—im—k1
impl =Imp2 = ... =lzy =Kk
+1 +2 2m 2 (23)

infm+l =...=i,= kn/m
and now the indices, ..., k,,, are all different one from the other. These configurations
contribute toZ" as

i n m n!

Z=MM—-1)...(M—n/m+1) exp[—g (7)} (24)

m° \T /1 min/m

from which one immediately deduces

F () = fo(T/m) (25)
where fy is defined in equation (20). The extremum of this free energy with respeat to
is obtained when

af

L =0=so(T/m) (26)
am
which gives
T
= = L. 27
m= g = (27)

Note that this relation is independent &f Therefore this one-step RSB solution predicts
that the system freezes at the critical temperafyrevhich is the temperature where the
entropysg vanishes. The energy density is constant throughout the low-temperature phase,
and equals

e = fo(Te) = —(log2)*/? (28)

in agreement with the direct computation. Since the free-energy is constant, the entropy of
the whole low-temperature phase is zero [6].
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It turns out that the finer details, like the distribution of the weights of the configurations
which dominate the low-temperature measure, can be computed by this replica approach
[12]. By definition, the momentg, are equal to

T pp = im etz (29)

1

. 1 -
- yI,ILno nn—1...n—k+1 Z Z T Ty Hal‘” fay (30)

where the sum primed over thes runs from 1 ton, with all a’s different. Owing to the
structure of the RSB, this means that one simply has to pickktke m replica indices

ai, ..., a; in the same ‘group’, for which there ate: — 1) ... (m — k + 1) possibilities once
a1 has been chosen. Hence,
nm—-1..m—k+1)— [k — u]
Y, = lim 2" = 31
Ko nn—1)...mn—k+1) T[K]T[L — ] (31)

in agreement with the direct computation (14).

3.2. The REM witld < 1. a first-order transition

The above method fails wheh< 1, which actually corresponds to a different universality
class from the point of view of critical phenomena, while the nature of the low-temperature
phase leaves it in the same class as the systemsswitli, in agreement with the extreme-
value classification which does not distinguish betwgéen 1 or § < 1. In order to study
the transition, we use Derrida’s original ‘microcanonical’ method. Using the normalization
B = N9, the partition function is equal to
0 le]
Z = de exp[Ng(e)] @(e) =log2— le® + T (32)
wheree = E/N, ande. is the energy density beyond which there are no states\(fex co),
given by 2 exp(—Ne?) = 1. As shown in figure 1, the integral is dominated either by
= 0 or by e = —e, depending on the temperature. Wh&n> T, = (log 2%/,
the free energy is equal te NT log 2, while forT < T, the free energy is equal to a
constant—Ne. = —N(log 2. The transition af; is now a first-order transition from the
thermodynamic point of view, with a jump in the entropy. This is in contrast to the usual
cases > 1 where the transition is thermodynamically of second drder
In the low-temperature phase, only the neighbourhooB0f —N|e¢| is of importance,
and we get back to the universal Gumbel distribution since the density of states is still locally
exponential:

P(E = Ec+€) exp% L= 6. (33)

The value ofu again determines the statistics of the weights, as above. Note, however, that
for § < 1, the value of the parameter (corresponding to the RSB parameter) is smaller
than 1 at the transitio = 7. . HenceY- is discontinuous af" = T, in contrast to the
cases > 1.

1 Although there is a jump in the Edwards—Anderson order parameter [6].
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d(e)

Figure 1. ¢(e), as defined in equation (32), as a functionedbr different temperatures. The
saddle point is thus at =0 for T > T; and ate = —|ec| for T < T¢. There are no states (in
the limit N — oo beyond—|eg|.

3.3. Physical interpretation of the replica solution

The reason why replica symmetry must be broken in order to get sensible results in this
problem is rather clear. Since the distribution of the Boltzmann weighis a power law

with an exponenjit < 1 in the low-temperature phase, all integer moment& ¢and thus

of z) are formally divergent, and are thus dominated by a cut-off for largehich has
nothing to do with the value of the ‘typicat’s, and hence of the free-energy. Calculation
based on a simple analytic continuation of the results obtained forl are thus bound to

fail. The replica method with one step RSB manages to comg@ttewith m = «, which
precisely picks up the contribution of the typical regionzof(Smaller values ofn would

be mostly sensitive to very smail while largerm’s probe atypically large values af.)

The algebra corresponding to one-step RSB exactly reproduces the extreme-value statistics
in the case of fast decaying distributions. In this respect, RSB does not mean more than a
‘localization’ of weights onto a small subset of all configurations, in the sense that major
contribution to the partition function comes from a finite number of configurations (i.e. all

Y > 0) [12]. Actually, the quantitied), were also introduced in the context of electron
localization in disordered potentials, and called ‘participation ratios’ [13].
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4. A d-dimensional random energy model

In this section we want to study a generalized version of the REM, where the energy levels
are embedded in a Euclidean space. Besides its intrinsic interest as a model for a particle
in a disordered environment, this problem also turns out to be directly relevant to the study
of declining Burgers turbulence, as we shall discuss in detail in the next section.

The model is defined as follows. To each poirtdf a (discretized)/-dimensional space,
one assigns a potential enerd@yx) which is a random number picked up independently
on each point, from a distributioR (E) the tail of which is given by (1). The total energy
on this point is the sum of a deterministic part, which we take for instance equafy@,
and this random contributio& (x). This defines a certain energy landscape, to which we
associate a partition functiof as

2
Z = /ddx exp(—V(Tw)> V(x) = % + E(x). (34)

Here we adopt a continuum notation but an ultraviolet cut-off (lattice spacing) is implicitely
assumed when necessary. The role of the deterministic part proportiondk ttwo-fold.
First of all it allows us to define a topology in the space of the pain{@he limitx =0
coincides with the REM, the fact that the points sit id-@imensional space is irrelevant).
For this purpose the deterministic part could be rather arbitrary, and indeed we can solve
the problem with a more general deterministic energy. As we shall need a quadratic term
later on, and in order to keep the presentation simple, we restrict ourselves to this particular
case. Second, the presence of this confining term allows us to deal with this model without
the need to introduce a finite box.

This model withd = 1 was in fact introduced and studied long ago as a toy model of an
interface in a random medium [14]: one possible interpretation isxlsthe coordinate of
a particular point on the interface, which feels a random pinning poteftia), while the
guadratic potential is a mean-field description of the elasticity due to the rest of the interface.
Another interpretation (in the context of Bloch walls) is to neglect the deformation of the
interface, which is only described by its centre of mass coordinafiéhe quadratic potential
is then induced by the demagnetizing fields due to the surrounding Bloch walls.

We want to compute the low-temperature properties of this system in the limit when
x — 0. For instance one would like to know the typical displacement of the ground state,
measured throughx2), or the average ground-state energy, etc. In the special case where the
energy is Gaussian distributed, this problem has already been studied by scaling arguments
[14], or with a Gaussian replica variational method [15]. We shall provide hereafter the
exact solution, first using a direct extreme-value statistics approach and then with the replica
method.

4.1. Extreme value approach

For simplicity, we restrict ourselves to the case- 1; the extension to higher dimensions

is however immediate. For temperatures going to zero, we want to find the minimum of all
the energie%x2 + E(x) whenx scans a one-dimensional lattice. The joint probability that
this minimum is achieved on a point and takes a valu& (x) = gx*z + E is given by

P(x*. E) = P(E) ];[ (1 — P (E n gx*z — %x’2>) . (35)
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For x — 0 we can safely take a continuum limit and we obtain
P(E
P(x*. E) = ﬁ(ibﬂ) exp(/ dv’ log [1 — P <E n %x*Z - ’;#)D (36)

Integrating overE we get the probability that the minimum is achieved on paiht For
small ¥, the minimumE is expected to be negative and large, and hence only the region
where P_ is small will be of importance. Rescaling asx* = x*/./«, we obtain

L2 _ 2
P()?*):/dE P(E)exp(—/j;P<<E+xzz>>. (37)

For smallx it is thus clear that the relevant energy region is the one around the ¥glue
such thatP_(E.) = /x, or

1/8
Eoe (W) , (38)

(Note that the role played here by the numbir of energy levels in the first section
is the length scale /4/k, which is natural.) Expanding the energy aroufig as E =
Ec — X*?/2 + ¢, we obtain

42 _ 2 72
P. (E +— ) ~ ﬁexp<aB|Ec|5-1 (e — 2)) ) (39)

The integral over; in (37) is a thus a Gaussian integral. We finally obtain, after a simple
integration overe

2x2
PG*) o exp<—33|Ec|“xz> . (40)

Therefore we have shown that the typical distance to the origin of the poedrresponding
to a minimum energy is

1 1\\'"z .
= (kSB|Eg)SH V2= — (I ()) B> 41
& = (kSB|Ec|"™) s og NG (41)

and more precisely the distribution of /¢ is a Gaussian of unit varianf.e We can also
compute the probability distribution of the ground-state enéfgas

PV = /dx /dE(S (V* — gxz - E) P(x,E) (42)

whereP(x, E) is given in (36). The result is the following: introducing the rescaled energy
u as

V' =Ec+

BS|E.|*1
| Ec| i| u (43)

lo
2BS|Ec|*1 g[ 2n BS|Ec|>—1
one finds that: is distributed according to the universal Gumbel distribution, equation (7).

In particular, the extremely deep states are again exponentially distributed, as’&xp],
with i = TBS|E¢|* L.

t Note that for smalk we havex£? > | E¢| which justifies our expansion arourit} in the derivation ofP (£*).
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4.2. Replica approach

Interestingly, the replica approach with a one-step RSB also leads texée result.
Introducing again the generating functigin) of P(E), we have

7 B K n 5 1 n
z —X;C”exp[—H;xﬁ;g@;sx,,@)]. (44)
The leading saddle point at low temperature is given as in (23) by grouping, tinen/m
packets ofn replicas. Within one packet all the, are equal, and the Gaussian integration
over the position of each packet gives

. nll 2n T m n

zZn = exp% [2 log em +8 (T):| = eXp_?f(P) (45)
with p = m/T. Looking for the extremum off as a function ofp we find, in the limit
x — 0 (and withé > 1),

Vs 6-1)/8 51
ot — 5B (Iog = BS|Eo (46)
NG

whereE. is given by equation (38). It is easy to check that the free engigy) precisely
reproduces the above result for the ground-state energy obtained directly, equation (43). As
explained above, the calculation of the quantifigsvithin the replica method indicates that

the low energy states are exponentially distributed with a parameter giver bym/T.

Hence, comparing (43) and (46), we see that the replica method indeed predicts the correct
statistics of deep states. The replica method also allows us to calculate

P(x)= ) exp |:—2KT doxZ+d e (; ng,x”)j|
a=1 X a=1

(47)

X2,...Xp

X1=Xx
Within the above one-step solution, this immediately leads to the following Gaussian result:

Kp* kp*x?
2n P72
which is identical to equation (40). The replica method also allows us to discuss the nonzero
temperature regime, which is much harder to study directly. As shown above, there is a
phase transition towards a ‘delocalized’ phase whgre= 0 whenu = p*T = 1. Note
that for any small but nonzero temperature and&o¢ 1, the system eventually reaches
u > 1 whenk — 0. This can be interpreted as follows: ias> 0, the number of accessible
states diverges. But since the difference between the ground state and the first excited state
decreases g4€:|*? (whens > 1), it does become smaller thdnfor a sufficiently smalk,
beyond which a large number of quasi-degenerate states contribute to the partition function,
as in the high-temperature phase. Only o= 1 is there a true transition temperature,
independent ok (see [16] for a discussion of this point in a different context). &er 1,
one expects a first-order phase transition (see above).

Finally, let us note that in the case where the confining potential is harmonic (i.e. equal
to kx?/2), the Gaussiamariational replica method developed in [7, 17] also gives #xact
result for p*.

P(x) = (48)

1 Note, however, that there is a true phase transition only in the kmit O or d — oo, i.e. when the number
of degrees of freedom is infinite. Otherwise, the transitionidce 1 is really a crossover.
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4.3. Physical interpretation of the replica solution

Using the replica method, we can also compute higher momem$x0f such asP (x) P (y),
etc. One can then show that the replica solution is identical to the following probabilistic
construction forP (x) for a given sample:

P(x) = %Z wtxfsx,xa, (49)

where the w, are random weights, chosen with a probability distribution given by
equation (13), and the, are random variables, independent from this, and chosen
according to a Gaussian of widkT?.

5. The random energy model and Burgers turbulence

5.1. The Cole—Hopf transformation

It is well known that the solution of Burgers equation with a random initial velocity field
can be expressed as a partition sum of the form equation (34). Let us restrict ourselves
for simplicity to one dimension, although, again, generalization to higher dimensions is
possible. The Burgers equation in the absence of forcing reads

v v 9%y

o R 50

ar " Vax T ox (50)
where v is the viscosity. The initial velocity fieldv(x,7 = 0) will be chosen as
v(x,t =0) = % Writing v = —ZUB'SEZ allows us to transform the Burgers equation
into the following linear diffusion equation (Cole—Hopf transform):

02 02z

RS et 51

or " ox2 1)
with initial condition Z(x, t = 0) = exp[—E(x)/2v]. The solution thus reads

T dx 1 [ (x — xg)?
Z(x,t):/ ex (—[+Ex]> 52
0 /= Pl—5, > () (52)

which is, up to a multiplicative factor, identical to the ‘spatial’ REM defined by (34) with
the following identification:

1
T — 2v K—);. (53)

Physically, the disordered problem associated with this REM is that of a point particle
interacting with a (random) pinning potenti&kx), attached by a spring to poing, which

is a simplified model for an extended elastic object in a random potential. This model was
recently considered in the context of solid friction [18].

Although the two problems, spatial REM on one hand and decaying Burgers turbulence
on the other hand, are formally identical, they may differ by the type of questions one wants
to address. For instance in turbulence one is interested in the correlations of velocities,
which involves knowing the variations of the free energy of the REM (52) wihevaries.

The case wheré (x) is random with short-range correlations correspond to a short-range
correlated velocity field(x, r = 0) with a ‘blue’ spectrum (i.e|v(k, r = 0)|> « k?, where

k is the Fourier variable) and the small viscosity (large Reynolds) limit corresponds to small
temperature in the associated disordered problem.
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E(x)

e Y (X)
=== E®)

Figure 2. Graphical solution of the Burgers equation in the limit of small viscosity, in the
neighbourhood of a cusp. The broken curve is the original poteaiia), while the full curve
corresponds to the effective potentidt(x). The curves actually continue beyond the cusp of
V*(x), where one metastable and one stable saddle point coexist.

5.2. Cusps and shocks

In the zero-viscosity (or zero-temperature) limit, the partition function (52) can be evaluated
by a saddle-point method. For a fixed, one looks for the value ofk* such that

k(xo — x*)%2/2 + E(x*) is minimum. The saddle-point construction [8] is graphically
explained in figure 2, for a simple profilE(x). For a givenxy, one draws as a function of

x the parabold’ — « (xo — x)?/2 and looks for the minimum value of, calledV*(xq), such

that this parabola intersects the cufér); calling x* the intersection point, the saddle-point
approximation gives

Z(xo,t) =~ exp[—v 2(50)] ~ exp(—zlv [%(xo —x%2 4+ E(x*)]) i (54)
For large values of, the parabola is very sharp, and there is only one ‘optimal’

intersection point* for each value ofc; to a first approximation, one thus h&gxo, ) >~

exp[—E (xp)/T]. On the other hand for very smadl, which corresponds to the large time

limit of the decaying Burgers turbulence, the parabdlax (xo—x)?/2 is extremely flat and

the intersection points will be determined by the extreme (negative) values of the potential

E(x). In this limit, the statistics of the effective potentigl'—and thus of the velocity

field v(x, tr)—reflects the statistics of the extreme valueskdgf), and is thus, to a large

degree, universal. Generically, the solutidhdepends very weakly ary, and the effective
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potentialV*(xg) can thus approximately be written as
V(o) = (xo = x4 E(r) (55)

with a fixed x*, where E(x*) corresponds to a particularly ‘deep’ minimuxt of the
potential E(x). This is the generic situation when one varigdocally; it corresponds to a
velocity field which is locally linear:
dV*(xo)
dvg
(Remember that by definitiohV* /ox* = 0.) There exist, however, exceptional valug®f
xo such that the first intersection of the parabola and the cHiwg appears simultaneously
at two pointsx} < x;3: whenxg varies fromx; — € to x; + ¢, the solutionx* jumps from
x; to x3. This corresponds to a cusp in the minimum vakieas a function ofxg (see
figure 2). In the language of Burgers turbulence, this is a shock since the valqeityich
is the derivative ofV*) is discontinuous atg = x;.

v(xg) = k(xg — x™¥). (56)

5.3. Decay from an uncorrelatefl(x) configuration: Kida's analysis

Let us now focus on the case wher(x) is randomly distributed with a short-range
correlation, and the time is large, corresponding to a very small This limit was
studied in detail by Kida in the context of Burgers equation [9] (see also [19]). Let us
denote byx, the various values of the intersection points between the parabola and the
curve E(x) when one variesg. After a proper coarse graining we can totally forget about
the correlations ofF(x), and thus thegx,} are randomly (Poisson) distributed along the
x-axis. If the distribution ofE decays as exp B|E|®, the extreme-value statistics tells
us that the distribution of, = E(x,) is of the Gumbel type. The only delicate point is
to understand what is the effective number of independent varialesppearing in this
distribution is. This number depends @nand is determined self-consistently as follows:
asxo departs fromx,, at some point (because of the quadratic growing te¢m — x,)2/2)
a better saddle points will be preferred. Since the width of the Gumbel distribution is
given by
1 1-5

W(IOQM) 3 (57)
(see equation (6) above), this sets the order of magnitude of the difference beiyeed
Eg, which must also be, by definition, of the order iofx, — x5)?. Furthermore, taking
the correlation length of the potenti&l(x) to be one, the effective number of independent
variables is given by

1 1-68
M = |xg — xy| ~ ————(logM) = (58)
¢ JisB D
or, to logarithmic accuracy, and using the correspondanee 1/¢,
M o i(logt) 5. (59)

Note that by definitionM is also the typical distance beween two shotks$, which is thus

seen to grow as'/? with logarithmic corrections (these corrections disappearsfer 1,

where the initial potential already possesses the universal exponential tail). This is one of
the important results of the original analysis of Kida. Furthermore, since the local slope of
the velocity isk = 1/¢, the maximum velocity is of order

_ 0 (ogn

Umax : «/E (60)
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which corresponds to a time dependent Reynolds number

Umaxe (Iog t) (175)/8
X
Y Vv
which goes to zero (albeit very slowly) when- oo for § > 1. This is similar to the above
remark that for any small temperature, the system goes back into its high-temperature phase
whenx — 0.
Using this construction, and the full distribution of thg,, Kida was able to obtain
directly the large time behaviour of the two-point velocity correlatioq,)v(x + r), which
is a universal function once the lengths are expressed in terms of the mean distance between
two shocksl (), and the velocities in units af,ax [9]. His result is recalled in the appendix.
Let us show how we can obtain precisely the same results using the replica method, which
in fact provides the full probability distribution function of{x + r) — v(x).

(61)

5.4. The replica analysis

Let us first note that equation (54) can alternatively (in the limiT’ — 0) be written as
an infinite sum:

K (xo — xa)2:| 62)

Z(x0) = exp[-V" (x0)/ T] = Y w, exp[—ZT

wherex, are Poisson distributed with an arbitrary (see below) linear dessityrhe w,
are independent random variables again chosen according to the distribution (13), with
given byu = T/A(M)

1= TsBY (logM)~ 5. (63)

That equation (62) precisely reproduces Kida’'s construction comes from the fact that,
as T — 0, the distribution of weights becomes so broad that the sum determining
Z(xo) becomes entirely dominated by a single term, which is the one which maximizes
wy eXp[—k (xo—x4)%/2]. Again, the corresponding, switches discontinuously as a function
of xo, when another valugs suddenly takes over. This construction is independent of the
densityo, provided thato M > 1 (i.e. in the long time limit).

The crucial point now is that the explicit construction (62) actually gives results which
areidentical to those obtained using a replica representation:

Z(xl)Z(XZ) s Z(xn) = Z exp[; Z Rn(a),n(b)xaxbi| (64)
b4 a,b=1

in the limit n — 0. In the above expressiom, denotes a permutation of the replica
indices, and theR,, matrix is a one-step RSB matrix [1] with elemerRs, = R; when
a andb are in the same diagonal block of size R,, = 0 whena andb are in different
blocks, andR,, = (1 —m)R,, enforcing the sum rul®_;_; R,, = 0. It has been shown
in [20] (and we recall the main steps of the derivation in the appendix) that the velocity
correlation functionv(x, t)v(y, t) can be computed either directly from equation (62), or
using the representation (64).

To test this equivalence of the three constructions of the partition function (54, 62,
64), we show in the appendix that, after a proper choice of length and velocity scales, the
v(x, H)v(y, t) correlation function is indeedlentical to the result obtained by Kida (see
appendix). The present formalism allows us to extend Kida's results in several directions.
For example, the full probability distribution function ofx) — v(y) can be computed as
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in [20]. The problem of decaying Burgers turbulence in higher dimensions can also be
addressed.

Let us finally note that the presence of shocks, which manifests itself |as—ay|
singularity inv(x, r)v(y, t) at short distances, is intimately connected with the breaking
of replica symmetry [20, 5]: for a replica symmetric mati, = R, Ryzp = Ry for
all a # b, v(x,t)v(y,t) is regular for x — y. As discussed above, these shocks reflect,
in the associated disordered problem, the existence of soatastability(see figure 2).
From a technical point of view, it is interesting to see in this example how metastability
is associated with RSB and, as emphasized in [5], with the existence of a short-distance
singularity in the effective free-energy*. Precisely the same behaviour is obtained via
the functional renormalization group (FRG) [21]: a singularity appears in the renormalized
correlation function of the effective free energy at scales larger than the ‘Larkin length’,
which is the scale beyond which metastability effects become important. (However, the
way to handle the shocks correctly within the FRG is still an open problem [5].)

6. Perspectives and other universality classes

As is the case for the central-limit theorem, there are other universality classes, distinct
from the Gaussian, when one relaxes the hypothesis of a finite variance or of independent
variables (or both) [10]. This is also true for the statistics of extremes, and it is interesting
to discuss how this might translate into a replica language. Two main directions can be
thought of: independent variables with other types of distributions, or correlated variables.
¢ Independent random variables.€Ehet and Weibull classes.
Let us first consider the case where the energy lekekre still independent, but with a
tail for large negativeE decaying as a power lawE|~*~?. In this case, the extreme values
are distributed according to the so-calleceéiret distribution, which is different from the
Gumbel distribution (for example, it decays asymptotically as a power law with the same
exponens). RescalingE by M1/% to keep the gap between the ground state and first excited
state finite asM — oo, we can calculate the quantiti&s defined in (14). We find, fol
large but finite

1 )

independentlyof k. (Similar results are obtained fér> 1.) This is clearly different form
equation (14). Note that this case cannot be addressed within the replica method without
some modifications since all the positive momefts n > 0 diverge!

Another universality class correspondsftowhich are strictly bounded, i.&; = Eq+e,
with € > 0. More precisely, the distribution af for ¢ — 0 is of the form P(¢) = €°
for € small. The resulting distribution of extremes is then called the Weibull distribution.
Rescaling the energies by a factt#**+*, we find through a direct computation thgt is
nontrivial for all temperatures, i.e. the model is always in a low-temperature phase. For
instance, in the case= 0 one gets; (T — oo) ~ kT* %, andY; ~1—CT for T — 0 (C
is Euler’'s constant). This is again clearly different from the one-step RSB result (14). One
might hope that such a situation will lead to a new type of RSB, but the situation seems
more complicated. In the particular case- 0, one finds

7=211 ZZ]; 8ii, (66)

i1,..0p 1
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where the product is only over the sitesuch that)__,8;;, > 0. The entropy of the
replica symmetric solution becomes negative below the temper@tusel/e. Assuming

a one-step RSB saddle point for < T, leads to a constant average energy, equal/to 1
however, the true ground-state energy can be calculated directly and is equal to one. The
problem seems to be that the free energy cannot be calculateddgydée-pointmethod in

the replica method: replica fluctuations are always important.

In any case, from the point of view of Burgers turbulence, one should keep in mind that
initial conditions for the velocity field which do not belong to the exponential universality
class considered by Kida will lead to rather different flow structures at long times, even
within the class ofE (x) functions with local correlations. The bounded case has actually
been studied recently by Newman [22].

Let us now turn to the case where tiie are Gaussian but long-range correlated; for
example the case whelie depends on @-dimensional space variable and such that

= =~ 8 !

Bk = "4 (67)
leading to

(E(x) — E(y))? o |x — y|M0-2d=m, (68)

The casen = 0, d = 1 corresponds to a random walk fér(x), which has been studied
in detail both in the context of Burgers turbulence [8], and also as a partly solvable model
of a particle in a random potential [14, 23, 24]. The genetal case has not been solved
yet. It has been studied by the Gaussian variational replica formalism of [7], which shows
[15] that the case < 2—d (corresponding to a growing correlation function (68)) requires
‘continuous’ RSB, while the casg> 2—d only requires a ‘one-step’ breaking. Independent
variables correspond tp = 2, i.e. a white spectrum foE(q). We conjecture here that the
casen > 2 — d belongs to the same (one-step RSB) universality class as the REM].
It is actually not difficult to show directly that the quantities
c,,=¥ n=23... (69)
Z

diverge with the system size below a certairdependent critical temperature which is
independent of; for n > 2 — d, and identical to those found in the REM. This suggests
that the one-step solution indeed remagxactfor all n > 2 — d. Preliminary numerical
simulations [25] seem to confirm this. This points towards a rather natural result, namely the
fact thatweak enough correlationneasured here by-215) between the random variables
do not change the universality class for the extreme-value statisfidss conjecture is
supported by a theorem for the cage= 1: for all n > 1, the extreme-value statistics is
indeed of the Gumbel tyge while some corrections appear in the marginal case 1.
This conjecture is stronger, since it requires that not only the ground state, but also the
low-lying energies are independent random variables with an exponential distribution. A
special case of this conjecture, supported by numerical simulations, was proposed recently
for the d = 2 problem withn = 0, which corresponds to the localization of electrons in
a random magnetic field [13]. In this two-dimensional case, the chpiee2 —d = 0
corresponds to a marginal logarithmic growth of the correlations.

Returning to the one-dimensional case, the situation changes drasticallymwheh,
which corresponds to a typically ‘growing’ profil€(x). The ratiosc, defined by (69)
diverge with the system size for all temperatures, suggesting indeed a change of universality

1 See theorem 3.8.2, [3].
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class. The only known possibility at present is then to describe the system within a
‘continuous’ RSB, which can be interpreted as a recursive tree-like construction of the
low-lying energy state. In particular, the correlation of the low-lying states have a well
known ultrametric structure. How well this ultrametric structure (known to be exact for the
case where the dimension af is infinite) reproduces the distribution and correlations of
the low-lying states in finite dimensions is an open proljlemich we leave for further
studies [25].

It would also be interesting to think of the spin-glass problem from the point of view
of the classification of very low-energy states and excitations, which could perhaps provide
a natural link between replicas and ‘droplet-like’ descriptions [26].
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Appendix

In this appendix we explain briefly how the replica method and the direct probabilistic
analysis lead to the same result for the two-point correlation function in decaying Burgers
turbulence at large times. We are interested in the case wherehas local correlations
(see section 5.3), in which case the result of Kida reads

- r

vix)v(x +r) = max (E(t)> (70)
wherel(t) is the mean distance between two shoaksx = ¢(¢)/t, and

Ho= = 9, & (71)

fdx 0 Px+y)+dx—y)

and¢ is an error function (x) = [;° dz exp(—z% + /7 /2xz).

We shall sketch how these results can be obtained from the replica representation (64).
The computations are lengthy and already contained in some previous papers. Here we just
want to help the interested reader to find his way in the literature in order to obtain the
result. One starts from the replicated partition function (64)

Z6DZ(x)... Z(x,) = Zexp[; > Rma),n(b)xaxb} (72)

a,b=1

where theR,, matrix is a one-step RSB matrix [1] with elemerRg, = R; whena andb
are in the same diagonal block of size R,, = 0 whena andb are in different blocks,
andR,, = (1 — m)R;, enforcing the sum rulg",_, R,, = 0. The first step, derived in [20,
appendix D], deduces from (72) the correlation between the powgtsof the partition

function
d n/m
/'L 7n/2 |:m\/ /dZ (e; + ,LLEy)m] )

(73)

n2 M=
Z(x,t)"2Z(y, 1) B(—n/2, _n/Z)/

1 Note that the average ground-state energy predicted by the Gauwssiational replica theory does not lead
back to the exact result [24] in the soluble random walk oase0.
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where we have defined
e, = e MRE=?/2 e, = e MRiEV?/2, (74)

al

Using the general link = —2v%%9%  one obtains

2 2

— . 1lev° 9
V() = lim o = Z(x, )"2Z(y, 1)'72 = (2umR)X(g11 + g12) (75)
n—0 n% 0x0dy

where we have defined (the notations are those of [20, appendix B])

*© de (e + /'Lev)miz(x —2)ex(y — 2)ey
=(@1- d - 2 76
g11= ( m)/o i [dz (ex + pey)” (76)
and
g=m / " du ([ de (ex + pey)"Hx = 2)en) ([ Gz (ex + pey)" "y — 2)ey) (77)
0 [ dz (ex + pey)™

This expression could also be derived directly without replicas from the infinite sum (62),
with the identificationmm = u, Ry = «/(Tu) as can be seen from [20, formulae (B10),
(B11) (where the number/mR;) was calleds). The whole problem is now to evaluate
this expression in the limit of large Reynolds, which means smatir low 7. In this
regime, using the fact that scales linearly with7 and R, scales as AT?, it has been
shown in [20, appendix B], that expression (75) reduces to

W) = <1 (\/7 /m dh e "*12[h? — d?/4]
v(X)Vv = — —
TV Jo T errsle iz Mo(h 4y 4 /2 Mo(—h — )]

d e
—— [ dn 78
T /0 ed2/4[e*hd/2./\/lo(h _ %) + €2 My(—h — 021)]2> (78)

where
® dz [x — ¥yl
M = _ < /2 = . 79
o(x) : Tne 70 (79)

So the natural length scale appearing in this solutigh=s./7/(ux). Using (63) and (59),

one sees easily that it precisely scales at large times as the average distance between shocks
of Kida’'s analysis. In terms of reduced lengths, we can check that the two distributions
(78) and (71) are actually identical.
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